新聞資訊
為您分享嘉遠最新動態
常州市嘉遠化工有限公司2024年六氟丙烯行業現狀分析
六氟丙烯低聚體又稱全氟烯烴低聚物,是由六氟丙烯制備得到的混合低聚物,主要包括六氟丙烯二聚體(HFPD)、六氟丙烯三聚體(HFPT)。
從上游原材料來看,六氟丙烯(HFP)又稱全氟丙烯,是一種有機化合物,制備方法包括二氟一氯甲烷熱解法、四氟乙烯熱解法兩種。六氟丙烯應用領域廣泛,市場需求不斷增長,2024年我國市場需求量達7萬噸左右。
六氟丙烯二聚體(HFPD)是在催化劑作用下由2個分子六氟丙烯經低聚反應制得的化合物。由于分子結構中含有碳氟鍵,六氟丙烯二聚體具有耐熱性強、化學穩定性高、憎水、憎油、防污等特點。基于此,六氟丙烯二聚體可用于制作含氟表面活性劑(如潤濕劑、乳化劑、滲透劑)、含氟清洗劑等。
六氟丙烯三聚體(HFPT),又稱全氟壬烯,由六氟丙烯氣體經過三聚反應得到。六氟丙烯三聚體有3種異構體,即全氟-2,4-二甲基-3-庚烯(T-1)、全氟-4-甲基-3-異丙基-2-戊烯(T-2)、全氟-2,4-二甲基-3-乙基-2-戊烯(T-3)。六氟丙烯三聚體為環保型溶劑,可用作干燥劑、清洗劑、稀釋劑等。

六氟丙烯三聚體(HFP Trimer) 是一種重要的含氟精細化學品,廣泛應用于電子、醫藥、涂料和高性能材料等領域。隨著中國經濟的快速發展和技術進步,六氟丙烯三聚體的需求量逐年增加,市場規模不斷擴大。
自2010年以來,中國六氟丙烯三聚體行業經歷了快速的發展階段。2010年,中國六氟丙烯三聚體的市場規模僅為2.5億元人民幣,產量約為1, 500噸。隨著下游應用領域的拓展和技術水平的提升,市場需求逐漸增加。2015年,市場規模增長至6.8億元人民幣,產量達到4, 000噸。進入2020年,盡管受到全球新冠疫情的影響,中國六氟丙烯三聚體行業依然保持了穩健的增長態勢。2020 年,市場規模達到了12.3 億元人民幣,產量為7,500噸。這一增長主要得益于電子行業和高性能材料市場的強勁需求,特別是新能源汽車和5G通信技術的發展,進一步推動了六氟丙烯三聚體的應用。
2024年,中國六氟丙烯三聚體行業的市場規模進一步擴大,達到了18.5 億元人民幣,產量突破10, 000噸。這一增長主要得益于以下幾個方面:
2.3.1下游應用領域擴展

新能源汽車、5G通信、半導體制造等高技術產業的快速發展,對六氟丙烯三聚體的需求持續增加。
國內企業在生產工藝和技術研發方面取得了顯著進展,提高了產品的質量和生產效率。
中國政 府出臺了一系列扶持政策,鼓勵新材料和高端制造業的發展,為六氟丙烯三聚體行業提供了良好的外部環境。
預計到2025年,中國六氟丙烯三聚體行業的市場規模將達到26. 8億元人民幣,產量有望達到14, 000噸。這一預測基于以下幾點考慮:
隨著新能源汽車、5G通信、半導體制造等領域的進一步發展,六氟丙烯三聚體的需求將持續增加。
國內企業將繼續加大研發投入,提升產品質量和生產效率,增強市場競爭力。
政府將繼續出臺相關政策,支持新材料和高端制造業的發展,為六氟丙烯三聚體行業提供有力的政策保障。
中國六氟丙烯三聚體(HFP) 行業近年來發展迅速,市場規模持續擴大。2023
年,中國HFP市場的總產量達到約1.5 萬噸,同比增長8%。這一增長主要得益于下游應用領域的快速發展,尤其是電子化學品、醫藥中間體和高性能材料等領域的需求增加。
電子化學品:隨著5G通信、半導體和新能源汽車等行業的快速發展,電子化學品的需求顯著提升。2023年,電子化學品領域對HFP的需求占比達到40%,預計到2025年將進一步提升至45%。
醫藥中間體:HFP 在醫藥中間體中的應用也日益廣泛,特別是在新型藥物的研發中。2023 年,醫藥中間體領域對HFP的需求占比約為25%,預計到2025年將達到30%。
高性能材料:HFP在高性能材料中的應用,如特種橡膠和涂料,也呈現出良好的增長態勢。2023 年,高性能材料領域對HFP的需求占比約為35%,預計到2025年將達到37%。
六氟丙烯主要用于合成氟聚合物,如氟橡膠和氟樹脂,這些材料在高溫、化學腐蝕環境下具有出色的性能。六氟丙烯隨著下游市場的不斷拓展,市場需求量也呈現穩定增長態勢。
??六氟丙烯是重要的含氟高分子材料之一,下游應用領域廣泛,市場需求保持增長趨勢。近年我國六氟丙烯產能及產量規模顯著擴張。近年來,全球及中國六氟丙烯市場規模不斷擴大。隨著生產技術的不斷進步和創新,六氟丙烯的生產效率和產品質量將不斷提高。這將有助于降低生產成本,提高市場競爭力。
??六氟丙烯生產企業眾多,市場競爭較為激烈,我國六氟丙烯生產企業多為大型氟化工企業,嘉遠緊跟其上。隨下游產業快速發展,近年我國HFP產能及產量規模顯著擴張。2024年,中國六氟丙烯的產量超過8.3萬噸,市場需求保持增長趨勢。全球及中國六氟丙烯市場規模不斷擴大,市場合計有效產能已達11.56萬噸/年?。
??全球范圍內,六氟丙烯的主要生產商包括美國杜邦公司、美國3M公司、日本大金工業株式會社等。在中國,六氟丙烯生產企業包括嘉遠擁有一定的生產規模和市場份額。隨著技術的改進和創新,六氟丙烯的生產效率和產品質量不斷提高。

六氟丙烯主要通過四氟乙烯(TFE)的裂解、全氟羧酸或全氟羧酸鹽的脫羧等化學反應制得。其中,四氟乙烯裂解是最主要的生產工藝。此外,還有通過R22的直接裂解、全氟環丁烷及其異構體的熱解等方法來生產六氟丙烯,但這些方法在工業上應用較少。
??四氟乙烯裂解制六氟丙烯的反應過程復雜,涉及多個副反應,需要精確控制反應條件和催化劑,以提高六氟丙烯的收率和純度。裂解反應在高溫高壓下進行,對設備材質和密封性能要求極高,以防止反應物泄漏和安全事故的發生。裂解反應為吸熱反應,需要消耗大量熱能,且反應過程中產生的副產物也需要進行后續處理,增加了能耗和成本。
??六氟丙烯行業現狀分析提到研發新型高 效催化劑,提高四氟乙烯裂解反應的活性和選擇性,減少副反應的發生,從而提高六氟丙烯的收率和純度。反應條件優化通過精確控制反應溫度、壓力、停留時間等條件,優化裂解反應過程,減少能耗和副產物的生成。對裂解反應產生的副產物進行綜合利用,如將八氟環丁烷等副產物進一步加工成其他有價值的化學品,提高資源利用率和經濟效益。
綜上所述,六氟丙烯行業的生產工藝水平在不斷提升,但仍需進一步優化和創新。通過技術創新、產業整合和市場需求增長等因素的推動,嘉遠六氟丙烯行業將迎來更加廣闊的發展前景。
親愛的客戶朋友們,當您在琳瑯滿目的市場中尋覓優 質六氟丙烯產品時,我們誠摯地歡迎您選擇我們的公司進行訂購。我們的公司在氟化工行業內深耕多年,積累了豐富的經驗與雄厚的實力,擁有專業的研發團隊,確保每一款產品都經過精心打磨,具備卓 越的品質和出色的性能。無論是產品的質量、物流,還是售后服務,我們都全力做到盡善盡美。春節期間,考慮到物流等方面的特殊性,我們對發貨流程進行了全 面優化與調整。我們提前與物流伙伴緊密溝通協調,制定了特殊時期的發貨預案,確保您的貨物能夠安全、及時地送達。盡管春節發貨與平時有所不同,但我們追求完 美的心從未改變。無論是產品的質量把控、功能的精準呈現,還是售后服務的貼心程度,我們都全力以赴做到盡善盡美。
我們始終將客戶的滿意度放在首位,珍視您的每一次選擇。所以,當您有六氟丙烯需求時,無需猶豫,歡迎找我們公司訂購,相信我們,在這個春節,也定不會讓您失望,定能給您帶來超乎想象的優 質體驗。

光學玻璃:現代光學技術的核心材料,賦能高端制造與精密儀器
光學玻璃,作為一種以高純度硅酸鹽、硼酸鹽、磷酸鹽為基礎并摻入特定稀有元素制成的特殊材料,憑借其優異的光學性能,已成為制造各類光學儀器與元件的關鍵基礎材料,廣泛應用于科研、工業、醫療及消費電子等多個前沿領域。多元分類滿足不同需求根據成分、性能及工藝的不同,光學玻璃呈現出豐富的種類。按成分主要分為常見的硅酸鹽玻璃、具有高透光低色散特性的硼酸鹽玻璃以及熱穩定與化學穩定性突出的磷酸鹽玻璃。按光學性能,則涵蓋高折射率、低折射率、低色散與高色散等類型,以滿足如高倍顯微鏡、高清相機鏡頭設計或光學系統色差校正等不同精密需求。制造工藝上,熔制、壓延和拉制等不同方法,分別適用于制造常規光學元件、薄片狀元件及光纖等特定形態產品。此外,防反射涂層玻璃、偏振片玻璃等具備特殊功能的產品,進一步拓展了其應用場景。卓越特性奠定應用基石光學玻璃的核心特性為其廣泛應用提供了堅實支撐:光學性能卓越:具備特定的折射率與較低的色散性,這對透鏡、棱鏡等元件的成像質量至關重要,能有效減少色散,保持圖像清晰。物理化學性質穩定:良好的熱穩定性使其能在寬溫域內保持性能;優異的化學耐腐蝕性確保了在復雜環境下的長期可靠使用。透光性極佳:對可見光與紫外線的高透過率,保證了光學儀器高效、清晰地傳遞光信號與圖像信息。加工適應性好:可通過切割、研磨、拋光等工藝靈活制成各種形狀與精度要求的元件,適應多樣化設計需求。廣泛應用驅動技術發展憑借上述特性,光學玻璃已成為多個高科技領域不可或缺的材料:光學鏡片與系統:是制造透鏡、棱鏡、反射鏡等核心鏡片的基礎,廣泛應用于相機、望遠鏡、顯微鏡等成像設備。激光技術:用于制造激光器中的倍頻晶體、透鏡、窗口等,對激光的生成、調控與傳輸起到關鍵作用。光學濾波與涂層:用于生產各種光學濾波器,實現對特定波長的選擇與控制;表面鍍制反射、增透、偏振等涂層,以優化光學器件性能。光學窗口與防護:作為光學系統的視窗,在允許光線透過的同時,保護內部精密部件免受環境損害。交叉領域滲透:在光譜分析、光纖通信、醫療器械乃至消費電子等領域,光學玻璃都發揮著重要功能,持續推動相關行業的技術進步。光學玻璃的持續發展與創新,正不斷助力光學技術向更高精度、更復雜功能邁進,為科技創新和產業升級提供著基礎而關鍵的 material support。
查看更多
2025-12-10
破解算力“散熱焦慮”:國產高端冷卻液實現全鏈條自主,成本大降
一、技術突破:性能對標國際巨頭,成本優勢顯著國內自主研發的冷卻液(包括全氟聚醚、氫氟醚等)實現純度99.9999%的突破,關鍵性能指標如導熱性、絕緣性、化學穩定性均達到3M同類產品水平。其核心創新包括:材料配方:通過分子結構優化,使氟化液工作溫域覆蓋-50℃~200℃,適配高密度算力芯片散熱需求;成本控制:依托螢石-氫氟酸-氟化液全產業鏈布局,生產成本較進口產品低30%,售價僅為3M的1/4;環保替代:開發無PFAS(全氟烷基物質)配方,符合歐盟REACH法規要求,填補3M退出市場后的空白。二、產能與產業鏈協同已建成千噸級氟化液生產裝置,可滿足全國35%以上的浸沒式液冷需求。其產能優勢體現在:垂直整合:原料氫氟酸自給率超90%,冷卻液生產成本較外購企業低33%-37%;快速擴產能力:基地利用低價能源(電價成本降30%),可快速復制生產線;高端應用儲備:電子級氟化液通過大牌認證,用于晶圓蝕刻環節來源:雪球
查看更多
2025-12-08
嘉遠參會綠色氟化工論壇:聚焦行業綠色與智能轉型
論壇上展示的AI輔助環保材料設計案例,為嘉遠團隊的技術路線思考提供了新的參照。2025年11月26日,嘉遠公司技術團隊赴廈門參加了第六屆綠色氟化工技術協同創新論壇。本屆論壇以 “綠色智造·鏈動未來” 為主題,聚焦于氟化工產業在“雙碳”背景下的可持續發展路徑。技術前沿與綠色實踐論壇的技術分享集中于兩大方向:綠色生產工藝與智能化創新。AI 賦能創新:上海大學教授解讀《AI 賦能綠色氟化工:分子智造驅動的環保氟膜技術與未來電子封裝》;新材料突破:中科院上海有機所研究員分享《一些含氟功能材料的創制及其應用》,東華大學教授解析《無色透明含氟聚酰亞胺薄膜的制備及其應用技術》;綠色技術實踐:浙江力久環境帶來《無水氟化氫凈化除砷新技術的應用》,天俱時集團分享《從 “氟” 到安,向 “綠” 而行 —— 基于本質安全與綠色智造的新一代氟化工 EPC 工程創新實踐》;合規與應用:通標標準范儒解讀《歐盟電池法規背景下,電池產業鏈的合規挑戰與應對措施》,探討《全氟聚醚在數據中心液冷領域的應用》。嘉遠團隊的參會收獲作為參會者,嘉遠團隊重點關注了與自身發展相關的領域,核心收獲明確:技術方向:明確了AI輔助研發在材料創新中的潛力,以及具體的綠色生產改進技術。合規前瞻:了解到歐盟電池法規等國際環保政策動向,為產品規劃提供了預警。行業洞察:通過與同行交流,感知到行業向綠色化、智能化雙軌轉型的共識與迫切性。未來展望通過此次論壇,嘉遠團隊認識到,綠色與智能已不僅是行業趨勢,更是企業未來競爭力的核心。團隊計劃將此次獲取的行業洞察進行內部轉化,評估其在具體研發與生產優化中的應用可能性,以務實推動公司的技術升級。
查看更多
2025-12-04
從“關鍵粘合劑”到“被挑戰者”:PTFE在固態電池競賽中的角色演變
電池制造車間里,隨著輥壓機發出低沉的轟鳴,一層層超薄固態電解質膜被精確地卷繞成卷,為電動車提供著比傳統電池高出一倍的能量密度。 今年6月,三星在韓國天安工廠建設的試驗生產線上,工程師們正驗證一種基于聚四氟乙烯(PTFE)干法電極技術的全新電池制造工藝。這種技術使用PTFE作為核心粘合劑,通過纖維化過程制造出支撐活性物質層狀結構的電極片。 隨著全球對固態電池產業化的加速布局,曾經默默無聞的PTFE——這種在工業領域常見的聚合物,如今已成為固態電池競賽中的關鍵材料。01 工藝革新在傳統的濕法電池制造中,漿料制備需要大量有機溶劑,而固態電池中的硫化物電解質恰恰與這些溶劑反應性較高。干法工藝則完全不同,它在制造復合正極和電解質薄膜時完全不使用溶劑,成為解決這一難題的關鍵路徑。PTFE以其獨特的物理特性成為干法工藝的首選粘合劑。在施加壓力和剪切力時,PTFE會形成纖維狀結構,這些纖維相互纏繞,形成支撐活性材料和導電劑的層狀網絡。這種“原纖化”過程使得電極材料能夠均勻分散,形成牢固的薄膜結構。正是這一特性,讓PTFE在固態電池干法電極制造中占據了難以替代的位置。02 短板顯現 PTFE的局限性隨著固態電池技術發展逐漸暴露。作為絕緣聚合物,它無法主動參與鋰離子的傳導過程,這在追求更高性能的固態電池中成為一個明顯短板。此外,PTFE提供的界面粘合力有限,無法確保活性材料、固體電解質和導電碳之間始終保持良好的界面接觸,這會影響電池的長期循環穩定性。對于厚度僅有25-35微米的超薄電解質膜來說,材料的機械性能至關重要,而PTFE制備的電解質復合膜在柔韌性和應力耗散方面仍有提升空間。03 改進突破 面對PTFE的局限性,全球科研團隊正在探索改良與替代方案。韓國某大學的研究人員嘗試使用一種鋰離子導電離聚物作為粘結劑,即聚(四氟乙烯-共-全氟(3-氧代-4-戊烯磺酸))鋰鹽。這種材料結合了PTFE的工藝優勢與鋰離子傳導能力,能夠確保復合正極各組分之間具有良好的界面接觸,同時促進鋰離子的傳輸。中國科學院的研究團隊則采用了另一種創新方案。他們利用熔融粘結技術,將低粘度的熱塑性聚酰胺(TPA)與硫化物電解質混合,構建聚合物滲透網絡。這種方法制備的超薄硫化物固態電解質膜厚度可控制在25微米以下,同時具備優異的柔韌性和離子電導率(2.1 mS/cm)。04 替代探索TPA相較于PTFE展現出多重優勢。通過熱壓成型誘導TPA在硫化物顆粒間隙滲透,研究團隊構建了完整的聚合物逾滲網絡。這種結構不僅能實現超薄成膜,還能有效耗散電池運行過程中產生的不均勻內應力,降低機械失效風險。在實際應用中,基于TPA熔融粘結技術的全固態電池表現出色循環性能。適配純硅負極的全電池可循環2000次,在高負載情況下經過9200小時、1400次循環后,面容量仍保持在2.5 mAh·cm-2以上。當正極材料載量提升至53.1 mg·cm-2時,電池能量密度超過390 Wh/kg和1020 Wh/L。05 產業動向全球電池企業已積極布局固態電池產業化。三星選擇PTFE干法電極技術作為降低制造成本、提升量產速度的競爭手段。該公司認為,這種工藝具有工藝縮短、設備精簡和厚膜化的潛力,正不斷提升量產成熟度。特斯拉、比亞迪、寧德時代、LG新能源等行業巨頭也都在積極導入干法電極技術。中國設備制造企業已推出第三代干法攪拌纖維化與干法成膜的全固態工藝,并成功向頭部客戶交付固態極片涂覆設備。行業預測,固態電池行業將在2025年下半年至2026年上半年進入中試線落地關鍵期,2027年有望開啟小規模量產裝車。當三星試驗生產線上基于PTFE干法工藝的驗證工作持續推進時,德國電池實驗室的研究員發現,使用聚酰胺替代PTFE的固態電池在針刺測試后僅僅表面溫度上升了3.2攝氏度。據行業數據,全球已有至少七家主流設備制造商推出了針對固態電池干法電極的專用設備解決方案。固態電池的能量密度已突破600Wh/kg,這意味著搭載這種電池的電動汽車續航里程可能輕松突破1000公里。
查看更多
2025-12-02